3,251 research outputs found

    Extraordinary normalcy: home, relationships and identities in narratives of unpaid care

    Get PDF
    Based on audio diaries and narrative interviews with family carers, this paper suggests care can be understood as an experience of ‘extraordinary normalcy’, meaning that profound shifts in home, relationships and identities take place through care, yet these become part of the normalcy of family life. To maintain and understand a sense of normalcy, our participants utilise professional and technological interventions in the home and draw on notions of responsibility, reciprocity and role-reversal as frameworks for explaining why they continue to care, despite the challenges it brings. The paper considers how domestic activities performed in the home can both highlight the extraordinary aspects of care and help maintain the normalcy of the everyday. Extraordinary normalcy is a concept that problematises definitions of care that remove it from the relational and everyday, yet acknowledges the challenges people face when performing care. This paper contributes to a call for a narrative based development of social policy and makes recommendations for policy and practice based on the in-depth accounts of family carers

    What the success of brain imaging implies about the neural code

    Get PDF
    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI’s limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI

    Towards decolonising computational sciences

    Get PDF
    This article sets out our perspective on how to begin the journey of decolonising computational fi elds, such as data and cognitive sciences. We see this struggle as requiring two basic steps: a) realisation that the present-day system has inherited, and still enacts, hostile, conservative, and oppressive behaviours and principles towards women of colour; and b) rejection of the idea that centring individual people is a solution to system-level problems. The longer we ignore these two steps, the more “our” academic system maintains its toxic structure, excludes, and harms Black women and other minoritised groups. This also keeps the door open to discredited pseudoscience, like eugenics and physiognomy. We propose that grappling with our fi elds’ histories and heritage holds the key to avoiding mistakes of the past. In contrast to, for example, initiatives such as “diversity boards”, which can be harmful because they superfi cially appear reformatory but nonetheless center whiteness and maintain the status quo. Building on the work of many women of colour, we hope to advance the dialogue required to build both a grass-roots and a top-down re-imagining of computational sciences — including but not limited to psychology, neuroscience, cognitive science, computer science, data science, statistics, machine learning, and artifi cial intelligence. We aspire to progress away from these fi elds’ stagnant, sexist, and racist shared past into an ecosystem that welcomes and nurtures demographically diverse researchers and ideas that critically challenge the status quo

    What the Success of Brain Imaging Implies about the Neural Code

    Get PDF
    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite limitations in what fMRI measures, implies that certain neural coding schemes are more likely than others. For fMRI to be successful given its low temporal and spatial resolution, the neural code must be smooth at the sub-voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we evaluate a number of reasonable coding schemes and demonstrate that only a subset are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of neural code and ventral stream, as well as what can be successfully investigated with fMRI

    Gerrymandering and computational redistricting

    Get PDF
    Partisan gerrymandering poses a threat to democracy. Moreover, the complexity of the districting task may exceed human capacities. One potential solution is using computational models to automate the districting process by optimizing objective and open criteria, such as how spatially compact districts are. We formulated one such model that minimised pairwise distance between voters within a district. Using US Census Bureau data, we confirmed our prediction that the difference in compactness between the computed and actual districts would be greatest for states that are large and, therefore, difficult for humans to properly district given their limited capacities. The computed solutions highlighted differences in how humans and machines solve this task with machine solutions more fully optimised and displaying emergent properties not evident in human solutions. These results suggest a division of labour in which humans debate and formulate districting criteria whereas machines optimise the criteria to draw the district boundaries. We discuss how criteria can be expanded beyond notions of compactness to include other factors, such as respecting municipal boundaries, historic communities, and relevant legislation

    On Simulating Neural Damage in Connectionist Networks

    Get PDF
    A key strength of connectionist modelling is its ability to simulate both intact cognition and the behavioural effects of neural damage. We survey the literature, showing that models have been damaged in a variety of ways, e.g. by removing connections, by adding noise to connection weights, by scaling weights, by removing units and by adding noise to unit activations. While these different implementations of damage have often been assumed to be behaviourally equivalent, some theorists have made aetiological claims that rest on nonequivalence. They suggest that related deficits with different aetiologies might be accounted for by different forms of damage within a single model. We present two case studies that explore the effects of different forms of damage in two influential connectionist models, each of which has been applied to explain neuropsychological deficits. Our results indicate that the effect of simulated damage can indeed be sensitive to the way in which damage is implemented, particularly when the environment comprises subsets of items that differ in their statistical properties, but such effects are sensitive to relatively subtle aspects of the model's training environment. We argue that, as a consequence, substantial methodological care is required if aetiological claims about simulated neural damage are to be justified, and conclude more generally that implementation assumptions, including those concerning simulated damage, must be fully explored when evaluating models of neurological deficits, both to avoid over-extending the explanatory power of specific implementations and to ensure that reported results are replicable. Electronic Supplementary Material: The online version of this article (10.1007/s42113-020-00081-z) contains supplementary material, which is available to authorized users

    Subjective value and decision entropy are jointly encoded by aligned gradients across the human brain

    Get PDF
    Recent work has considered the relationship between value and confidence in both behavioural and neural representation. Here we evaluated whether the brain organises value and confidence signals in a systematic fashion that reflects the overall desirability of options. If so, regions that respond to either increases or decreases in both value and confidence should be widespread. We strongly confirmed these predictions through a model-based fMRI analysis of a mixed gambles task that assessed subjective value (SV) and inverse decision entropy (iDE), which is related to confidence. Purported value areas more strongly signalled iDE than SV, underscoring how intertwined value and confidence are. A gradient tied to the desirability of actions transitioned from positive SV and iDE in ventromedial prefrontal cortex to negative SV and iDE in dorsal medial prefrontal cortex. This alignment of SV and iDE signals could support retrospective evaluation to guide learning and subsequent decisions
    • …
    corecore